Skip to main content

Net Energy and Greenhouse Gas Emissions Evaluation of Biodiesel Derived from Microalgae


Biofuels derived from microalgae have the potential to replace petroleum fuel and first-generation biofuel, but the efficacy with which sustainability goals can be achieved is dependent on the lifecycle impacts of the microalgae-to-biofuel process. This study proposes a detailed, industrial-scale engineering model for the species Nannochloropsis using a photobioreactor architecture. This process level model is integrated with a lifecycle energy and greenhouse gas emission analysis compatible with the methods and boundaries of the Argonne National Laboratory GREET model, thereby ensuring comparability to preexisting fuel-cycle assessments. Results are used to evaluate the net energy ratio (NER) and net greenhouse gas emissions (GHGs) of microalgae biodiesel in comparison to petroleum diesel and soybean-based biodiesel with a boundary equivalent to “well-to-pump”. The resulting NER of the microalgae biodiesel process is 0.93 MJ of energy consumed per MJ of energy produced. In terms of net GHGs, microalgae-based biofuels avoids 75 g of CO2-equivalent emissions per MJ of energy produced. The scalability of the consumables and products of the proposed microalgae-to-biofuels processes are assessed in the context of 150 billion liters (40 billion gallons) of annual production.


Batan, L. Quinn, J.1, Willson, B., Bradley, T.


Environmental Science Technology


Liaw Batan, Jason Quinn, Bryan Willson, and Thomas Bradley. Net Energy and Greenhouse Gas Emissions Evaluation of Biodiesel Derived from Microalgae. Environmental Science & Technology 2010 44 (20), 7975-7980


Read Publication